Final answer:
To rotate a figure counterclockwise 270° about the origin, we can use the rotation formulas. Plugging in the coordinates of each point, we get the new coordinates for M, N, O, P', and Q.
Step-by-step explanation:
To rotate a point counterclockwise about the origin, we can use the rotation formulas:
x' = x cos(q) + y sin(q)
y' = -x sin(q) + y cos(q)
Plugging in the coordinates of each point:
M: (4, -4)
x' = 4 cos(270°) + (-4) sin(270°) = 4(0) + (-4)(-1) = 4
y' = -4 sin(270°) + (-4) cos(270°) = (-4)(-1) + (-4)(0) = 4
So, M: (4, 4)
Using the same process:
N: (-2, -4)
x' = -2 cos(270°) + (-4) sin(270°) = -2(0) + (-4)(-1) = -4
y' = -4 sin(270°) + (-4) cos(270°) = (-4)(-1) + (-4)(0) = 4
So, N: (-4, 4)
O: (-2, 0)
x' = -2 cos(270°) + 0 sin(270°) = -2(0) + 0 = 0
y' = 0 sin(270°) + 0 cos(270°) = 0(0) + 0(0) = 0
So, O: (0, 0)
P': (-4, 2)
x' = -4 cos(270°) + 2 sin(270°) = -4(0) + 2(-1) = -2
y' = 2 sin(270°) + 2 cos(270°) = 2(-1) + 2(0) = -2
So, P': (-2, -2)
Q: (2, 2)
x' = 2 cos(270°) + 2 sin(270°) = 2(0) + 2(-1) = -2
y' = 2 sin(270°) + 2 cos(270°) = 2(-1) + 2(0) = -2
So, Q: (-2, -2)