The correlation coefficient (r) is 0.599, rounded to three decimal places.
How to find correlation coefficient?
To calculate the correlation coefficient (r), use the following formula:
![\[ r = (n(\sum xy) - (\sum x)(\sum y))/(√([n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2])) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/hx3vix3p2mc6os69i4f4ypkog0x00k4g0g.png)
where:
n = number of data points,
x and y = variables (age and bone density, in this case),
∑xy = sum of the product of corresponding values of x and y,
∑x and ∑y = sums of x and y,
∑x² and ∑y² = sums of the squares of x and y.
Calculate the values:
![\[ \sum x = 33 + 45 + 53 + 57 + 65 = 253 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ksjj4rlpi562f3z9ws2wf8jldvvju2j6hp.png)
![\[ \sum y = 350 + 345 + 340 + 320 + 315 = 1670 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ai5ulw6inbfa1l7c0bd2kz0tnpmyox50jh.png)
![\[ \sum xy = (33 * 350) + (45 * 345) + (53 * 340) + (57 * 320) + (65 * 315) = 857600 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/atrx6hnm6lya86g9md9oukfnqnmiubgvhg.png)
![\[ \sum x^2 = 33^2 + 45^2 + 53^2 + 57^2 + 65^2 = 9322 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/zpu1tupux4n45rwx68lxzqrnx38dg5oz6v.png)
![\[ \sum y^2 = 350^2 + 345^2 + 340^2 + 320^2 + 315^2 = 1107550 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/d7japqh1mt24xtwvtrsszdly9k7nwy2uq0.png)
Now, substitute these values into the correlation coefficient formula:
![\[ r = (5(\sum xy) - (\sum x)(\sum y))/(√([5\sum x^2 - (\sum x)^2][5\sum y^2 - (\sum y)^2])) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/vugwjcfh7gjn2qn830553x7pfwadftomqx.png)
![\[ r = (5(857600) - (253)(1670))/(√([5(9322) - (253)^2][5(1107550) - (1670)^2])) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/qukos1pzna1l3eqzk6avm99b1l1qwsjf1z.png)
![\[ r = (4288000 - 422810)/(√([46610][5551930 - 2788900])) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/htqtzy93a1uqedajm1j7sfddhatfjr8mlw.png)
![\[ r = (3865190)/(√(46610 * 2763030)) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/i77b57w3nhmg5qjd9az3h8u2xx7l6s3vm4.png)
![\[ r \approx (3865190)/(645448.413) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/4pufz0s7k4ns17r2qeiar35wgj3j7m9up7.png)
r = 0.599
Therefore, the correlation coefficient (r) is 0.599, rounded to three decimal places.