89.5k views
4 votes
A 702-kg horse a lifts a 52-kg hay bale b as shown. at the instant when r = 8 m and θ = 60°, the velocity and acceleration of the horse are 2 m/s to the right and 0.5 m/s2 to the left, respectively. neglect the mass of the pulley.

1 Answer

7 votes

Final answer:

To calculate the magnitude and direction of the force on each foot of the horse, we use the equation (total mass of horse and rider * acceleration due to gravity)/2. To find the minimum coefficient of friction between the hooves and the ground, we divide the horizontal force exerted by the wall by the vertical force on each foot.

Step-by-step explanation:

Given a horse with a mass of 702 kg and a hay bale with a mass of 52 kg, and assuming the center of mass of the horse is midway between its feet, we can calculate the magnitude and direction of the force on each foot. Since two feet are on the ground, the force on each foot is equal to (total mass of horse and rider * acceleration due to gravity)/2. To find the minimum coefficient of friction between the hooves and the ground, we need to consider the force exerted by the wall, which is horizontal. The minimum coefficient of friction will be equal to the horizontal force exerted by the wall divided by the vertical force on each foot.

User Rafols
by
7.3k points