164k views
4 votes
The formula for the area of a circle of radius r can be expressed as a function A(r) = πr^2. Find the average rate of change of the area of a circle on the interval [4, 4.01].

User Hynekcer
by
8.0k points

1 Answer

2 votes

Final answer:

To find the average rate of change of the area of a circle on the interval [4, 4.01], we can use the formula A(r) = πr^2.

Step-by-step explanation:

To find the average rate of change of the area of a circle on the interval [4, 4.01], we can use the formula A(r) = πr^2. Substituting the values, we have A(4) = π(4^2) = 16π, and A(4.01) = π(4.01^2) = 16.0801π.

The average rate of change is then calculated by finding the difference in the area values and dividing by the difference in the radius values:

average rate of change = (A(4.01) - A(4)) / (4.01 - 4) = (16.0801π - 16π) / 0.01 ≈ 0.0801π / 0.01 ≈ 8.01π.

User Saurabh Bayani
by
7.9k points