459,218 views
8 votes
8 votes
if the point (-1,4)and (2,13)are on the graph of the quadratic function
y = 7x {}^(2) + bx + cwhat are the values of b and c

User Lashonne
by
3.1k points

1 Answer

14 votes
14 votes

The Solution:

Given:


y=7x^2+bx+c

Given that the points: (-1,4) and (2,13) are on the graph of the given equation,

We are required to find the values of a and b.

Substitute (x= -1, y = 4) in the equation, we get:


\begin{gathered} 4=7(-1)^2+b(-1)+c \\ 4=7-b+c \\ -3=-b+c...eqn(1) \end{gathered}

Substitute (x= 2, y = 13) in the equation, we get:


\begin{gathered} 13=7(2)^2+b(2)+c \\ 13=28+2b+c \\ -15=2b+c...eqn(2) \end{gathered}

Solving eqn(1) and eqn(2) simultaneously by the elimination method:

Subtract eqn(1) from eqn(2):


\begin{gathered} -15--3=2b--b+c-c \\ -12=3b \end{gathered}

Divide both sides by 3.


b=(-12)/(3)=-4

Substitute -6 for b in eqn(1).


\begin{gathered} -3=-b+c \\ -3=-(-4)+c \\ \\ -3=4+c \\ -3-4=c \\ -7=c \\ c=-7 \end{gathered}

Therefore, the correct answers are:

b = -4

c = -7

User Miquel
by
3.2k points