52.6k views
5 votes
Which of the following is equivalent to 3x-4y?

A) y = -9/7x
B) y = -3/4x
C) y = 3/4x - 9/4
D) y = 4/3x - 9/4

User Kirikaza
by
8.4k points

1 Answer

3 votes

Final answer:

Upon examination, none of the given options (A, B, C, D) are equivalent to 3x - 4y. Each option fails to rearrange into the form 3x - 4y without additional terms or incorrect coefficients.

Step-by-step explanation:

To determine which of the options is equivalent to 3x - 4y, we can try to rearrange each option to see if it can be converted into this form. The goal is to isolate y on one side to compare the coefficients of x and the constant terms.

Let's examine each option:

  • Option A: y = -9/7x. In this equation, if we multiply both sides by -4, we do not get 3x, so this option is not equivalent.
  • Option B: y = -3/4x. If we multiply both sides by -4 to get 4y, we would also need to multiply -3/4 by 3 to get 3x, but we would get -3x, not 3x, so this is not equivalent either.
  • Option C: y = 3/4x - 9/4. Multiplying everything by 4 to get rid of the fraction: 4y = 3x - 9. Rearranging, we have 3x - 4y = 9, which is not the same because of the extra 9, so it is not equivalent.
  • Option D: y = 4/3x - 9/4. Multiplying by -4 to get -4y on one side, we also get -4/3x which cannot be equivalent to 3x - 4y, so this is also not equivalent.

Nevertheless, none of the provided options are equivalent to 3x - 4y because none of them can be rearranged to this exact form without additional terms or different coefficients.

User Stefan Wallin
by
9.1k points