Final answer:
The question deals with solving a quadratic equation using the quadratic formula. Identifying the coefficients from the equation and substituting into the formula will yield solutions for x. After solving, verification is essential for accuracy.
Step-by-step explanation:
The subject of this question involves solving a quadratic equation, a concept frequently encountered in algebra. The quadratic equation provided in the question is x² + 0.0211x - 0.0211 = 0. To solve this equation, one can use the quadratic formula, which is applicable to any equation of the form ax² + bx + c = 0. In this formula, a, b, and c are coefficients from the equation, and x represents the variable to be solved for.
First, we identify the coefficients a = 1, b = 0.0211, and c = -0.0211. Substituting these values into the quadratic formula, x = [-b ± √(b² - 4ac)] / (2a), we can solve for the variable x. After solving, it's important to check the answer to ensure that it's reasonable and accurate.