34.8k views
1 vote
Rotate 90° counter-clockwise around the origin, and then reflect over the x-axis. What are the new coordinates for the points (-8, 0), (-11, -5), (-4, -10), and (-6, -4)?

a) (-8, 0), (-5, -11), (-10, -4), (-4, -6)
b) (0, -8), (-5, -11), (-10, -4), (-4, -6)
c) (0, -8), (-11, -5), (-4, -10), (-6, -4)
d) (-8, 0), (-11, -5), (-4, -10), (-6, -4)

User Thomite
by
7.9k points

1 Answer

3 votes

Final answer:

To rotate 90° counterclockwise around the origin and reflect over the x-axis, switch the x and y coordinates and negate the new x coordinate, then negate the y coordinate.

Step-by-step explanation:

To rotate a point 90° counterclockwise around the origin, we switch the x and y coordinates and negate the new x coordinate. To reflect over the x-axis, we negate the y coordinate of each point. So, the new coordinates for the points (-8, 0), (-11, -5), (-4, -10), and (-6, -4) are:

(0, -8), (-5, -11), (-10, -4), and (-4, -6).

User Makunomark
by
8.2k points