146,136 views
37 votes
37 votes
a. Rewrite the equation in exponential form.b. Create a table of coordinates, using the exponential form from part (a). Begin by selecting -2, -1, 0, 1, and 2 for y.c. Using the coordinates from part (b), graph the logarithmic function.y = log 3xa. Rewrite the equation in exponential form. x =b. For each given value of y, find the value of x to complete the ordered pair.x = 3Yy(x,y)x = 3-2-2X = 3-1-1x = 300X = 3¹x = 3²12.-2)].0)(0.2)

a. Rewrite the equation in exponential form.b. Create a table of coordinates, using-example-1
User Samreen
by
2.8k points

1 Answer

20 votes
20 votes
Step-by-step explanation

We have the equation:


y=\log_3x.

a) To express x in terms of y, we take into account the following property of logarithms:


y=\log_ax\Rightarrow x=a^y.

Choosing a = 3, we have:


x=3^y.

b) Now, we evaluate this function for the values y = -2, -1, 0, 1 and 2. To do that, we simply replace the value of y in the last equation, then we simplify the result:

1) y = -2

Replacing y = -2 in the equation of x, we have:


x=3^(-2).

Now, the negative power of a number can be written as the positive power but in the denominator:


x=(1)/(3^2).

The 3 square is equal to 3*3 = 9, so we have:


x=(1)/(9).

So the point for y = -2 is:


(x,y)=((1)/(9),-2).

2) y = -1


y=-1\operatorname{\Rightarrow}x=3^(-1)=(1)/(3^1)=(1)/(3)\Rightarrow(x,y)=((1)/(3),-1).

3) y = 0


y=0\operatorname{\Rightarrow}x=3^0=1\Rightarrow(x,y)=(1,0).

4) y = 1


y=1\operatorname{\Rightarrow}x=3^1=3\Rightarrow(x,y)=(3,1).

5) y = 2


y=2\Rightarrow x=3^2=9\Rightarrow(x,y)=(9,2).Answer

a) The exponential form is: x = 3^y

b) The values of x for the table are:

• y = -2 ⇒ (,1/9,, -2)

,

• y = -1 ⇒ (,1/3,, -1)

,

• y = 0 ⇒ (,1,, 0)

,

• y = 1 ⇒ (,3,, 1)

• y = 2 ⇒ (,9,, 2)

User Ammar Ameerdeen
by
2.7k points