Final answer:
The binomial expansion of (x - 2y)3 can be found using the binomial theorem. The expression is x3 - 6x2y + 12xy2 - 8y3.
Step-by-step explanation:
The binomial expansion of (x - 2y)3 can be found using the binomial theorem. The binomial theorem states that (a + b)n = an + nan-1b + n(n-1)an-2b2 + ... + b^n, where n is a positive integer.
For the given expression (x - 2y)3, we have a = x and b = -2y. Plugging these values into the binomial theorem, we get:
(x - 2y)3 = x3 + 3x2(-2y) + 3x(-2y)2 + (-2y)3
Simplifying the expression, we get:
(x - 2y)3 = x3 - 6x2y + 12xy2 - 8y3
Therefore, the correct option is A. x3 - 3x2y + 3xy2 - 3.