194,907 views
22 votes
22 votes
Find csc, cot0, and sin 0, where is the angle shown in the figure.Give exact values, not decimál approximations.

Find csc, cot0, and sin 0, where is the angle shown in the figure.Give exact values-example-1
User Shubhank
by
3.2k points

1 Answer

22 votes
22 votes

Step-by-step explanation:

Given that:


\begin{gathered} \theta=? \\ Hypotenuse=6 \\ Adjacent=5 \end{gathered}

We will obtain the following trigonometric identities as shown below:


\begin{gathered} csc\theta=(1)/(\sin\theta) \\ \text{Using Pythagoras Theorem, we will obtain the missing side:} \\ a^2=c^2-b^2 \\ a^2=6^2-5^2 \\ a^2=36-25 \\ a^2=11 \\ a=√(11) \\ a=opposite=√(11) \\ \\ \sin\theta=(opposite)/(hypotenuse)=(√(11))/(6) \\ csc\theta=(1)/((√(11))/(6))=(6)/(√(11)) \\ csc\theta=(6)/(√(11)) \end{gathered}

Then,


\begin{gathered} cot\theta=(1)/(\tan\theta) \\ \tan\theta=(opposite)/(adjacent)=(√(11))/(5) \\ cot\theta=(1)/((√(11))/(5)) \\ cot\theta=(5)/(√(11)) \end{gathered}

Then,


\sin\theta=(√(11))/(6)

User Briarheart
by
3.3k points