Final answer:
To find the first positive root of the function f(x) = x cos(x) using the false-position and secant methods, 3 iterations were performed with two initial guesses that bracket the root. The root estimates, points used, and approximate percent relative errors were reported at each iteration.
Step-by-step explanation:
To find the first positive root of the function f(x) = x cos(x) using the false-position and secant methods, we will perform 3 iterations with two initial guesses that bracket the root. Let's assume our initial guesses are x1 = 1 and x2 = 2.
- False-Position Method:
- Iteration 1:
- Calculate f(x1) = x1 cos(x1) = 1 cos(1) ≈ 0.5403
- Calculate f(x2) = x2 cos(x2) = 2 cos(2) ≈ -1.185
- Calculate the new estimate for the root using the false-position formula: x = x2 - (f(x2) / (f(x2) - f(x1))) * (x2 - x1) ≈ 2 - (-1.185 / (-1.185 - 0.5403)) * (2 - 1) ≈ 1.8727
- Calculate the approximate percent relative error using the formula: |εα| = |(x - x2) / x| * 100% ≈ |(1.8727 - 2) / 1.8727| * 100% ≈ 6.05%
- Iteration 2:
- Repeat the same calculations using the new estimate for the root, x1 = 1.8727, and the previous estimate x2 = 2
- Calculate the new estimate for the root: x ≈ 1.8727 - (-1.0279 / (-1.0279 - 0.5403)) * (2 - 1.8727) ≈ 1.5615
- Calculate the approximate percent relative error: |εα| ≈ |(1.5615 - 1.8727) / 1.5615| * 100% ≈ 19.89%
- Iteration 3:
- Repeat the calculations using the new estimate for the root, x1 = 1.5615, and the previous estimate x2 = 2
- Calculate the new estimate for the root: x ≈ 1.5615 - (-2.8161 / (-2.8161 - 0.5403)) * (2 - 1.5615) ≈ 1.3477
- Calculate the approximate percent relative error: |εα| ≈ |(1.3477 - 1.5615) / 1.3477| * 100% ≈ 13.65%
Secant Method:
- Iteration 1:
- Calculate f(x1) = x1 cos(x1) ≈ 0.5403
- Calculate f(x2) = x2 cos(x2) ≈ -1.185
- Calculate the new estimate for the root using the secant formula: x = x2 - (f(x2) * (x2 - x1)) / (f(x2) - f(x1)) ≈ 2 - (-1.185 * (2 - 1)) / (-1.185 - 0.5403) ≈ 1.9137
- Calculate the approximate percent relative error: |εα| ≈ |(1.9137 - 2) / 1.9137| * 100% ≈ 4.72%
- Iteration 2:
- Repeat the same calculations using the new estimate for the root, x1 = 2, and the previous estimate x2 = 1.9137
- Calculate the new estimate for the root: x ≈ 1.9137 - (-1.7069 * (1.9137 - 2)) / (-1.7069 - 0.5403) ≈ 1.7688
- Calculate the approximate percent relative error: |εα| ≈ |(1.7688 - 1.9137) / 1.7688| * 100% ≈ 48.53%
- Iteration 3:
- Repeat the calculations using the new estimate for the root, x1 = 1.9137, and the previous estimate x2 = 1.7688
- Calculate the new estimate for the root: x ≈ 1.7688 - (-1.1216 * (1.7688 - 1.9137)) / (-1.1216 - 0.5403) ≈ 1.6364
- Calculate the approximate percent relative error: |εα| ≈ |(1.6364 - 1.7688) / 1.6364| * 100% ≈ 7.86%