116,254 views
4 votes
4 votes
Y
y = {2x}^(2) + 6 - 10 \\ y = - x + 5find the solution to the system of equations

User AndyMcKenna
by
2.7k points

1 Answer

19 votes
19 votes

1) Solving the system of equations:

y=2x²+6-10 ⇒ y =2x² -4

y=-x+5 x (-1)

1.2 Rewriting it and Subtracting

y =2x²- 4

-y =+x-5

----------------------

0=2x²+x -9

2) Now solving that quadratic equation 2x²+x -9=0, using the Resolutive formula:


\begin{gathered} \Delta=b^2-4ac \\ \Delta=(1)^(2)-4(2)(-9) \\ \Delta=1+72 \\ \Delta=73 \end{gathered}
\begin{gathered} x=\frac{-b\pm\sqrt[]{\Delta}}{2a} \\ x=\frac{-1\pm\sqrt[]{73}}{4} \\ x_1=\frac{-1-\sqrt[]{73}}{4} \\ x_2=\frac{-1+\sqrt[]{73}}{4} \end{gathered}

3) Now plugging in back into the II equation y=-x+5


\begin{gathered} y=-(\frac{-1-\sqrt[]{73}}{4})+5 \\ y=\frac{1+\sqrt[]{73}}{4}+5 \\ y=\frac{21+\sqrt[]{73}}{4} \end{gathered}

3.1Plugging the x solutions into y=2x²-4


\begin{gathered} y=2(\frac{-1-\sqrt[]{73}}{4})^2-4 \\ y=\frac{21+\sqrt[]{73}}{4} \\ y=2(\frac{-1+\sqrt[]{73}}{4})^2-4\text{ =}\frac{21-\sqrt[]{73}}{4} \end{gathered}

After checking in both of the original equations, there is only one valid x solution.

So the solution to that system is


x=\frac{-1-\sqrt[]{73}}{4}\text{ and }y=\frac{21+\sqrt[]{73}}{4}

User Hulk
by
3.1k points