Final Answer:
Rectangular form of this expression is -10 + 2i.
Thus the correct option is (c).
Step-by-step explanation:
The given expression
\).
Now, to convert this polar form to rectangular form (a + bi), we use Euler's formula:
![\[a + bi = r \cos(\theta) + i \sin(\theta)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/grovjijtr5786loi83p0jarez4zb13gic4.png)
Substitute the values:
![\[a + bi = 10 \cos(270) + i \sin(270)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/h7heopedjgjalz4cykqbes395lnugwtasx.png)
Evaluate the trigonometric functions:
![\[a + bi = 10 \cdot 0 + i \cdot (-1)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/fk2eo9eszao521vjia30jw1lwlgidwklgz.png)
Simplify:
a + bi = -i
Now, compare this result with the given answer choices:
A) 10 - 2i
B)-10 - 2i
C) -10 + 2i
D) 10 + 2i
The correct answer is C) -10 + 2i. This represents the rectangular form of the given polar expression.
Thus the correct option is (c).