Final answer:
To prove that sin²(A+B) - sin²(A-B) = sin 2A sin 2B, we can use the trigonometric identity sin²(A+B) - sin²(A-B) = (sin(A+B))^2 - (sin(A-B))^2 and simplify the expression to obtain 2sin2Acos2B = 2sin2Acos2B. Therefore, option (a) sin²(A+B) - sin²(A-B) = sin 2A sin 2B is the correct answer.
Step-by-step explanation:
To prove that sin²(A+B) - sin²(A-B) = sin 2A sin 2B, we can use the trigonometric identity:
sin²(A+B) - sin²(A-B) = (sin(A+B))^2 - (sin(A-B))^2
Expanding this expression, we get:
(sinAcosB + cosAsinB)^2 - (sinAcosB - cosAsinB)^2
By factoring and simplifying, we obtain:
4sinAcosAsinBcosB = 2sin2Acos2B
Therefore, sin²(A+B) - sin²(A-B) = sin 2A sin 2B. So, option (a) sin²(A+B) - sin²(A-B) = sin 2A sin 2B is the correct answer.