4 points belong to a function
Then
f(0) = 5
f(1) = 6
f(2) = 9
f(3)= 14
y = f(x) = ax^2 + bx + c
(x,y) = (0,5) means c= 5
Now rest to find a,b
(x,y) = (1,6) ,. Then. a•1^2+ b•1 = a + b= 1
Now
(x,y)= (2,9). Then a•2^2 + b•2 + 5 = 9
. Then. 4a + 2b = 4
(x,y) = (3,14). Then. a•3^2 + b•3 = 9
. So. 9a + 3b = 9
Now find a, b
b = 1 - a
Then
2a + (1 - a) = 2
2a - a = 2 - 1
a = 1
Also
b = 1 - a = 1 -1 = 0
THEN a,b,c are
a= 1
b= 0
c= 5
and ANSWER IS
equation f(x)
f(x) = 1•x^2 + 0•x + 5
f(x) = x^2 + 5