319,486 views
15 votes
15 votes
How we do this one last tutor got it wrong

How we do this one last tutor got it wrong-example-1
User Tenticon
by
3.8k points

1 Answer

29 votes
29 votes

First, we have to find the derivative


\begin{gathered} h^(\theta)=3cos((\theta)/(2)) \\ \\ h^(\prime)(\theta)=3(d)/(d\theta)(cos((\theta)/(2))) \\ h^(\prime)(\theta)=3\text{ \lparen - }\sin((\theta)/(2))(d)/(d\theta)((\theta)/(2))) \\ \\ h^(\prime)(\theta)=3(\text{ -}sin((\theta)/(2))((1)/(2)) \\ \\ h^(\prime)(\theta)=\text{ -}(3)/(2)sin((\theta)/(2)) \end{gathered}
\begin{gathered} \text{ - }(3)/(2)sin((\theta)/(2))=0 \\ sin((\theta)/(2))=0 \\ \sin^(-1)(0( \\ sin0º=0 \\ andsin180º=0 \\ \\ \\ \end{gathered}

now he solve for h(theta)


\begin{gathered} h(\theta)=3cos((\theta)/(2)) \\ \\ h(\text{ -}2\pi)=3cos(\text{ -}(2\pi)/(2))=3cos(\text{ -}\pi)=3(\text{ -1\rparen= -3} \\ h(0)=3cos((0)/(2))=3cos0=3(1)=3 \end{gathered}

User SlavaNov
by
2.9k points