Step-by-step explanation:
Introduction
Plants have evolved different reproductive strategies for the continuation of their species. Some plants reproduce sexually while others reproduce asexually, in contrast to animal species, which rely almost exclusively on sexual reproduction. Plant sexual reproduction usually depends on pollinating agents, while asexual reproduction is independent of these agents. Flowers are often the showiest or most strongly-scented part of plants. With their bright colors, fragrances, and interesting shapes and sizes, flowers attract insects, birds, and animals to serve their pollination needs. Other plants pollinate via wind or water; still others self-pollinate.
Asexual Reproduction
Vegetative reproduction is a type of asexual reproduction. Other terms that apply are vegetative propagation, clonal growth, or vegetative multiplication. Vegetative growth is enlargement of the individual plant, while vegetative reproduction is any process that results in new plant “individuals” without production of seeds or spores. It is both a natural process in many, many species as well as a process utilized or encouraged by horticulturists and farmers to obtain quantities of economically-valuable plants. In this respect, it is a form of cloning that has been carried out by humanity for thousands of years and by plants for hundreds of millions of years. Sexual Reproduction and The Flower
The flower is the reproductive organ of plants classified as angiosperms. All plants have the means and corresponding structures for reproducing sexually. The basic function of a flower is to produce seeds through sexual reproduction. Seeds are the next generation, serving as the primary method in most plants by which individuals of the species are dispersed across the landscape. Actual dispersal is, in most species, a function of the fruit (a structural part that typically surrounds the seed).
image
Plants and sexual reproduction: Plants that reproduce sexually often achieve fertilization with the help of pollinators such as (a) bees, (b) birds, and (c) butterflies.
Sexual Reproduction in Gymnosperms
Gymnosperms produce both male and female gametophytes on separate cones and rely on wind for pollination.
image
Male and female gametophytes: These series of micrographs shows male and female gymnosperm gametophytes. (a) This male cone, shown in cross section, has approximately 20 microsporophylls, each of which produces hundreds of male gametophytes (pollen grains). (b) Pollen grains are visible in this single microsporophyll. (c) This micrograph shows an individual pollen grain. (d) This cross section of a female cone shows portions of about 15 megasporophylls. (e) The ovule can be seen in this single megasporophyll. (f) Within this single ovule are the megaspore mother cell (MMC), micropyle, and a pollen grain.
Female Gametophyte
The female cone also has a central axis on which bracts known as megasporophylls are present. In the female cone, megaspore mother cells are present in the megasporangium. The megaspore mother cell divides by meiosis to produce four haploid megaspores. One of the megaspores divides to form the multicellular female gametophyte, while the others divide to form the rest of the structure. The female gametophyte is contained within a structure called the archegonium.
Reproductive Process
Upon landing on the female cone, the tube cell of the pollen forms the pollen tube, through which the generative cell migrates towards the female gametophyte through the micropyle. It takes approximately one year for the pollen tube to grow and migrate towards the female gametophyte. The male gametophyte containing the generative cell splits into two sperm nuclei, one of which fuses with the egg, while the other degenerates. After fertilization of the egg, the diploid zygote is formed, which divides by mitosis to form the embryo. The scales of the cones are closed during development of the seed. The seed is covered by a seed coat, which is derived from the female sporophyte. Seed development takes another one to two years. Once the seed is ready to be dispersed, the bracts of the female cones open to allow the dispersal of seed; no fruit formation takes place because gymnosperm seeds have no covering.