386,822 views
37 votes
37 votes
Graph the image of square EFGH after a rotation 90° counterclockwise around the origin.

Graph the image of square EFGH after a rotation 90° counterclockwise around the origin-example-1
User Bbu
by
2.9k points

1 Answer

11 votes
11 votes
Answer:

See the graph below

Step-by-step explanation:

Given:

Quadrilaterla EFGH on a coordinate plane

To find:

to graph the quadrilateral after a rotation of 90° counterclockwise around the origin.

The rule for a 90° counterclockwise around the origin is given as:


\begin{gathered} (x,\text{ y\rparen}\rightarrow\text{ \lparen-y, x\rparen} \\ Switch\text{ x anf y and }negate\text{ the y while keeping x constant} \end{gathered}

We will apply the rules to the coordinates of EFGH:

E = (3, 3)

F = (6, 3)

G = (6, 6)

H = (3, 6)

Applying the rule:


\begin{gathered} (3,\text{ 3\rparen }\rightarrow\text{ \lparen3, 3\rparen }\rightarrow\text{ \lparen-3, 3\rparen} \\ E^(\prime)\text{ = \lparen-3, 3\rparen} \\ \\ (6,\text{ 3\rparen }\rightarrow(3,\text{ 6\rparen }\rightarrow(-3,\text{ 6\rparen} \\ F^(\prime)\text{ = \lparen-3, 6\rparen} \\ \\ (6,\text{ 6\rparen }\rightarrow\text{ \lparen6, 6\rparen }\rightarrow(-6,\text{ 6\rparen} \\ G^(\prime)\text{ = \lparen-6, 6\rparen} \\ \\ (3,\text{ 6\rparen }\rightarrow(6,\text{ 3\rparen }\rightarrow(-6,\text{ 3\rparen} \\ H^(\prime)\text{ = \lparen-6, 3\rparen} \end{gathered}

Plotting the graph:

Graph the image of square EFGH after a rotation 90° counterclockwise around the origin-example-1
Graph the image of square EFGH after a rotation 90° counterclockwise around the origin-example-2
User OneRaynyDay
by
3.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.