388,779 views
31 votes
31 votes
Solve the following equation on the interval [0°, 360º). Round answers to the nearest tenth. If there is no solution, indicate "No Solution."2sec^2(x) - 13tan(x) = -13

Solve the following equation on the interval [0°, 360º). Round answers to the nearest-example-1
User Gohel Dhaval
by
2.9k points

1 Answer

21 votes
21 votes

Given


2\sec ^2(x)-13\tan (x)=-13

Add 13 to both sides


\begin{gathered} 2\sec ^2(x)-13\tan (x)+13=-13+13 \\ 2\sec ^2(x)-13\tan (x)+13=0 \end{gathered}

We have that


\sec ^2(x)=1+\tan ^2(x)

So, substitute in the above equation


2(1+\tan ^2(x))-13\tan (x)+13=0

Simplify


\begin{gathered} 2+2\tan ^2(x)-13\tan (x)+13=0 \\ 15+2\tan ^2(x)-13\tan (x)=0 \end{gathered}

Reordering the equation


2\tan ^2(x)-13\tan (x)+15=0

We get a quadratic equation, then solve by factoring


(2\tan (x)-3)(\tan (x)-5)=0

Separate the solutions


\begin{gathered} 2\tan (x)-3=0 \\ 2\tan (x)-3+3=0+3 \\ 2\tan (x)=3 \\ (2\tan (x))/(2)=(3)/(2) \\ \tan (x)=(3)/(2) \end{gathered}

And


\begin{gathered} \tan (x)-5=0 \\ \tan (x)-5+5=0+5 \\ \tan (x)=5 \end{gathered}

Next, solve for x for each solution


\begin{gathered} \tan (x)=(3)/(2) \\ x=\tan ^(-1)((3)/(2)) \\ x=56.3 \end{gathered}

And


\begin{gathered} \tan (x)=5 \\ x=\tan ^(-1)(5) \\ x=78.7 \end{gathered}

Answer:

x = 56.3° and x = 78.7°

User Shawana
by
3.4k points