a) The 90% confidence interval is approximately (82.47, 88.77) F.
b) The 95% confidence interval is approximately (82.28, 88.96) F.
A confidence interval refers to the probability that a population parameter will fall between two set values. It is the mean of an estimate plus and minus the variation in that estimate or the range of values, given a level of confidence.
To construct a confidence interval for the population mean, apply the formula as follows:
CI =
![[ \bar{x} \pm Z \left( (\sigma)/(√(n)) \right) ]](https://img.qammunity.org/2024/formulas/mathematics/college/u1mffadxwvngqqbxfdxk21uolzit4lgehu.png)
Where:
CI = Confidence Interval
= the sample mean
= the population standard deviation
= the sample size
= the z-score corresponding to the desired confidence level
The z-scores are:
For a 90% confidence interval = 1.645
For a 95% confidence interval = 1.96.
Using the given values:
Sample mean
= 85.62 F
Population standard deviation
= 13.59 F
Sample size
= 57
For a 90% confidence interval:
![[ 85.62 \pm 1.645 \left( (13.59)/(√(57)) \right) ]](https://img.qammunity.org/2024/formulas/mathematics/college/h8vd8q5658fgkqjqbk9d1pbosw8tz8t161.png)
For a 95% confidence interval:
![[ 85.62 \pm 1.96 \left( (13.59)/(√(57)) \right) ]](https://img.qammunity.org/2024/formulas/mathematics/college/6jigzsxk81h5gsrreh5korlfcaec9yyf6m.png)
Calculating the confidence intervals:
For the 90% confidence interval:
![[ 85.62 \pm 1.645 \left( (13.59)/(√(57)) \right) = 85.62 \pm 3.15 ]](https://img.qammunity.org/2024/formulas/mathematics/college/syuyccvfq21njjro0o4z8irx194cbeyhpf.png)
Thus, the 90% confidence interval is approximately (82.47, 88.77) F.
For the 95% confidence interval:
![[ 85.62 \pm 1.96 \left( (13.59)/(√(57)) \right) = 85.62 \pm 3.34 ]](https://img.qammunity.org/2024/formulas/mathematics/college/y1mpqyf1p1cmii4geuorubwcn1fy5hwudc.png)
Thus, the 95% confidence interval is approximately (82.28, 88.96) F.