129k views
0 votes
A group of surveying students measures a distance twice, obtaining 67.455m and 67.350m. What is the relative accuracy of the measurements?

a) 0.00015m
b) 0.105m
c) 0.1m
d) 0.000105m

User Rodling
by
7.0k points

1 Answer

3 votes

Final answer:

The relative accuracy is the absolute difference between the two measurements (0.105m) divided by one of the measurements, yielding a dimensionless quantity that is not explicitly asked for in the question. The closest option provided that represents the absolute difference calculated is 0.105m.

Step-by-step explanation:

The relative accuracy of the measurements refers to the precision of the measurements in relation to the magnitude of the measurements themselves. To find the relative accuracy, we can calculate the absolute difference between the two measurements and then compare this to the size of the measurements.

First, we find the absolute difference between the two measurements:

  • 67.455m - 67.350m = 0.105m

This difference represents the variability in the measurements. However, the question is asking for the relative accuracy, which is typically expressed as a fraction or a percentage of the actual measurement.

To calculate the relative accuracy, we divide the absolute difference by one of the measurements (since they are very close it doesn't matter much which one we use):

  • 0.105m / 67.455m ≈ 0.00156

To express this as a dimensionless quantity, we would leave it as is or convert it to a percentage. However, the options given (a through d) seem to be looking for an absolute value. As such, the closest option that represents the absolute difference calculated is option b) 0.105m.

User Brayn
by
7.8k points