Final Answer:
The solution to the expression (12v² + 2012 – 56v + 33) / (4v – 4) is 3v² + 8v + 8. Option B is answer.
Explanation:
To solve the expression (12v² + 2012 – 56v + 33) / (4v – 4), we can start by factoring the numerator:
12v² - 56v + 2045 = 4(3v² - 14v + 511)
Now we can rewrite the expression as:
(4(3v² - 14v + 511) + 33) / (4v - 4)
We can simplify the numerator by distributing the 4:
(12v² - 56v + 2044 + 33) / (4v - 4)
Simplifying further, we get:
(12v² - 56v + 2077) / (4v - 4)
Now we can factor out a 4 from the numerator:
4(3v² - 14v + 519) / (4v - 4)
We can simplify the expression by factoring out a 4 from the denominator:
4(3v² - 14v + 519) / 4(v - 1)
The 4s cancel out, leaving us with:
3v² - 14v + 519 / (v - 1)
Now we can use polynomial division to divide the numerator by the denominator:
3v + 17
___________
v - 1 | 3v² - 14v + 519 - (3v² - 3v) ------------- -11v + 519 -(-11v + 11) ------------ 8v + 519
Therefore, the expression (12v² + 2012 – 56v + 33) / (4v – 4) simplifies to 3v² + 8v + 8. Option B is answer.