52.4k views
0 votes
a diving bell is an apparatus that is used to transport people from the surface of open water to a depth and back again. an 80.0 kg marine biologist enters the bell. how many liters of seawater should be pumped into the bell so the bell just floats beneath the surface of water?

1 Answer

6 votes

To calculate the volume of seawater that should be pumped into the diving bell so that it just floats beneath the surface of the water, we can use Archimedes' principle. Therefore, approximately 4330 liters of seawater should be pumped.

To calculate the volume of seawater that should be pumped into the diving bell so that it just floats beneath the surface of the water, we can use Archimedes' principle. According to Archimedes' principle, the buoyant force acting on an object submerged in a fluid is equal to the weight of the fluid displaced by the object. In this case, the buoyant force should be equal to the weight of the diving bell and the marine biologist inside it.

The weight of the diving bell is given as 4350 kg, and the weight of the marine biologist is 80.0 kg. So, the total weight is 4350 kg + 80.0 kg = 4430 kg.

The density of seawater is given as 1025 kg/m³. The volume of seawater that should be pumped into the diving bell can be calculated using the formula:

Volume = Total Weight / Density of Seawater

Substituting the given values, we get:

Volume = 4430 kg / 1025 kg/m³ = 4.33 m³

Converting the volume to liters, we multiply it by 1000: 4.33 m³ x 1000 = 4330 liters.

Therefore, approximately 4330 liters of seawater should be pumped into the diving bell so that it just floats beneath the surface of the water.

--The given question is incomplete, the complete question is

"A diving bell is an apparatus that is used to transport people from the surface of open water to a depth and back again. See the image below. They are usually cylindrical in shape with a radius of 75.0 cm and a height of 2.50 m. The diving bell is separated into two compartments. The top compartment holds the people, the lower compartment holds several pieces of equipment: a tank of compressed air with a valve to release air into and out of the bell, a valve that regulates the entry of seawater for ballast (diving weighting system to add or subtract buoyancy), and an electric heater that maintains a 20%0 ∘ C temperature in the bell. The total mass of the bell is 4350 kg. The density of seawater is 1025 kg/m 3 . (a) An 80.0 kg marine biologist enters the bell. How many liters of seawater should be pumped into the bell so the bell just floats beneath the surface of the water?"--