Final answer:
and
, considering the given expressions for
, and
.
Step-by-step explanation:
To find
and
, we'll use the chain rule and compute the partial derivatives step by step:
Given:
![\[ z = x \cdot e^y \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/jrch9uvea4132kzpzholddnsdkncbdcj3z.png)
![\[ x = u^3 - v^3 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/qhucaushn3fkev99o9kq5ugqiwofjxrhxj.png)
![\[ y = u^3 + v^3 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/encmcnmgyy2d8f7bel3dy5zx6921vbafdo.png)
1. Compute
:
![\[ (\partial z)/(\partial u) = (\partial z)/(\partial x) \cdot (\partial x)/(\partial u) + (\partial z)/(\partial y) \cdot (\partial y)/(\partial u) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/x5g45w954m58tl3cxkg6z2rucx4d4j933h.png)
![\[ (\partial z)/(\partial x) = e^y \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/j4d2l5iyyg0xyk5yq7bmj6erefm2mddud2.png)
![\[ (\partial x)/(\partial u) = 3u^2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/vsryncw167xu651dp3rb6wkc4mwr8zdq9l.png)
![\[ (\partial z)/(\partial y) = x \cdot e^y \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/baex8rcvs69184dcdz2f4bvy1u6felrc37.png)
![\[ (\partial y)/(\partial u) = 3u^2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/853o8g50o8q0etl36kemrro4sdxmte5xaf.png)
![\[ (\partial z)/(\partial u) = e^y \cdot 3u^2 + x \cdot e^y \cdot 3u^2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/qvfb0u22ifsavt6p2mvndr1qvcjiv9dphf.png)
2. **Compute
:**
![\[ (\partial z)/(\partial v) = (\partial z)/(\partial x) \cdot (\partial x)/(\partial v) + (\partial z)/(\partial y) \cdot (\partial y)/(\partial v) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/9z1b7n2sx4xq0ibwmr2vb30g4yv58q4qnx.png)
![\[ (\partial x)/(\partial v) = -3v^2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/bxgocpzschxhx0zr61a436nc2ut6low3ve.png)
![\[ (\partial y)/(\partial v) = 3v^2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/vkvgojxz2c0qyng9lu8myarmmbt688umyp.png)
![\[ (\partial z)/(\partial v) = e^y \cdot (-3v^2) + x \cdot e^y \cdot 3v^2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/25t8kn7tfovugzqsbzq6101rtbiwk4p598.png)
These expressions provide the partial derivatives of
with respect to
and
, respectively. The specific values will depend on the values of
and
in the given domains where the functions are defined.