78.1k views
2 votes
Please solve this and evaluate the final exponent

Please solve this and evaluate the final exponent-example-1

2 Answers

1 vote

Answer:

1.157 x 10^-19

Explanation:


(10^(-20)*5^(-3)*125)/(6*5^(-4) *3^(2))

Simplify the exponents, negative exponents become positive when inversed or flipped to the top or bottom.


(5^(4)*125)/(6*10^(20)*3^(2)*5^(3))

Solve the exponents

(625*125)/(6*10^20*9*125)

=625/(54*10^20)

1.157 x 10^-19

User Pogrindis
by
7.6k points
1 vote

Answer:


\sf 1.15740741* 10^(-19)

Explanation:

Let's evaluate the expression using the properties of exponents:


\sf (10^(-20) * 5^(-3) * 125)/(6 * 5^(-4) * 3^2)

Apply the properties of exponents:


\sf (10^(-20) * 5^(-3) * 5^3)/(6 * 5^(-4) * 3^2)

Combine the terms with the same base:


\sf (10^(-20) * 5^((-3 + 3)))/(6 * 5^(-4) * 3^2)

Simplify the exponents:


\sf (10^(-20) * 5^0)/(6 * 5^(-4) * 3^2)

Anything raised to the power of 0 is 1:


\sf (10^(-20) * 1)/(6 * 5^(-4) * 3^2)

Simplify further:


\sf (10^(-20))/(6 * 5^(-4) * 3^2)

Apply the properties of exponents to the denominator:


\sf (10^(-20))/(6 * (1)/(5^4) * 3^2)

Simplify:


\sf (10^(-20))/(6 * (1)/(625) * 9)

Combine terms:


\sf (10^(-20))/((54)/(625))

Invert and multiply:


\sf 10^(-20) * (625)/(54)

Simplify further:


\sf (625)/(54) * 10^(-20)


\sf 1.15740741* 10^(-19)

So, the simplified expression is
\sf 1.15740741* 10^(-19).

User Tamzin Blake
by
8.4k points