11.3k views
0 votes
BCD is a straight line. Find the unknowns in the following figures.

BCD is a straight line. Find the unknowns in the following figures.-example-1

2 Answers

3 votes
x = 63
y = 180 - 63 * 2 = 54
User Pegues
by
7.7k points
6 votes

Answer:


\sf\\\ (i)\ \angle ACD=\angle ABC+\angle BAC\ \ \ [\textsf{An exterior angle of a triangle is equal to the sum of}\\\textsf{its two opposite non-adjacent interior angles.]}\\or,\ x=28^o+35^o\\\therefore\ x=63^o


\sf\\(ii)\ \angle ACD=\angle ADC=x=63^o\ \ \ \textsf{[Base angles of isosceles triangle are equal.]}\\\\(iii)\ \angle CAD+\angle ADC+\angle ACD=180^o\ \ \ \textsf{[Sum of angles of triangle is 180}^o.]\\or,\ y+x+x=180^o\\or,\ y+63^o+63^o=180^o\\or,\ y=54^o

Alternative method:


\sf\\(i)\ \angle ACD=\angle ADC=x\ \ \ \textsf{[Base angles of isosceles triangle are equal.]}\\\\(ii)\ \angle ABD+\angle BAD+\angle ADB=180^o\ \ \ [\textsf{Sum of angles of triangle is 180}^o.]\\or,\ 28^o+y+35^o+x=180^o\\or,\ x+y=117^o......(1)


\sf\\(iii)\ \angle ACD+\angle ADC+\angle CAD=180^o\ \ \ [\textsf{Sum of angles of triangle is 180}^o.]\\or,\ x+x+y=180^o\\or,\ 2x+y=180^o.....(2)


\sf\\\textsf{Subtracting equation (2) from (1),}\\+(2x+y)=180^o\\-(x+y)=-117^o\\or,\ x=63^o\\\\\textsf{Equation (1) becomes}\\63^o+y=117^o\\or,\ y=54^o

User Xiefei
by
7.8k points