232k views
5 votes
Let cosA= 1/root10

and sin A < 0. Find sin (2A), cos (2A) and tan (2A).
V10
Give exact answers as fully-simplified fractions, if necessary.
sin (2A) =
cos (2A) =
tan (2A) =

Let cosA= 1/root10 and sin A < 0. Find sin (2A), cos (2A) and tan (2A). V10 Give-example-1
User Samoka
by
7.0k points

2 Answers

3 votes

Answer:


\sin(2A)=-(3)/(5)


\cos(2A)=-(4)/(5)


\tan (2A)=(3)/(4)

Explanation:

Given:


\cos A=(1)/(√(10))


\sin A < 0

The cosine of an angle in a right triangle is defined as the ratio of the length of the side adjacent the angle to the length of the hypotenuse:


\cos(x)=\sf (Adjacent\;side)/(Hypotenuse)

Given that cos(A) = 1/√(10)​, we can create a right triangle where the side adjacent to angle A is 1, and the hypotenuse is √(10).

To find the length of the side opposite angle A, we can use the Pythagorean Theorem:


O=\sqrt{\left(√(10)\right)^2-1^2}


O=√(10-1)


O=√(9)


O=3

If cos(A) is positive and sin(A) is negative, then angle A can be found in quadrant IV of the Cartesian coordinate system. Therefore, both sin(A) and tan(A) will be negative:


\sin(A)=\sf -(Opposide\;side)/(Hypotenuse)=-(3)/(√(10))


\tan(A)=(\sin(A))/(\cos(A))=(-(3)/(√(10)))/((1)/(√(10)))=-3

To find the exact values of sin(2A), cos(2A) and tan(2A), we can use the double angle identities:


\boxed{\begin{array}{l}\underline{\textsf{Double Angle Identities}}\\\\\sin (2x)= 2 \sin x\cos x\\\\\cos (2x)=\cos^2 x- \sin^2 x\\\\\tan (2 x)=(2\tan x)/(1 - \tan^2x)\\\\\end{array}}

To find the exact value of sin(2A), substitute the values of sin(A) and cos(A) into the sine double angle identity:


\sin(2A)=2\left(-(3)/(√(10))\right)\left((1)/(√(10))\right)


\sin(2A)=-(2\cdot 3\cdot 1)/(√(10)\cdot√(10))


\sin(2A)=-(6)/(10)


\boxed{\boxed{\sin(2A)=-(3)/(5)}}

To find the exact value of cos(2A), substitute the values of cos(A) and sin(A) into the cosine double angle identity:


\cos(2A)=\left((1)/(√(10))\right)^2-\left(-(3)/(√(10))\right)^2


\cos(2A)=(1)/(10)-(9)/(10)


\cos(2A)=(1-9)/(10)


\cos(2A)=-(8)/(10)


\boxed{\boxed{\cos(2A)=-(4)/(5)}}

To find the exact value of tan(2A), substitute the value of tan(A) into the tangent double angle identity:


\tan (2A)=(2(-3))/(1 -(-3)^2)


\tan (2A)=(-6)/(1 -9)


\tan (2A)=(-6)/(-8)


\boxed{\boxed{\tan (2A)=(3)/(4)}}

User DrM
by
7.6k points
4 votes

Answer:

1.
\bf{\sin (2A) = -(3)/(5)}

2.
\bf{\cos (2A) = -(4)/(5)}

3.
\bf{\tan (2A) = (3)/(4)}

Explanation:

Given that
\tt{\cos A = (1)/(√(10))} and
\tt{\sin A < 0}, we can find the values of
\tt{\sin (2A)},
\tt{\cos (2A)}, and
\tt{\tan (2A)} using the double-angle formulas.

The double-angle formulas are:

1.
\tt{\sin (2A) = 2 \sin A \cos A}

2.
\tt{\cos (2A) = \cos^2 A - \sin^2 A}

3.
\tt{\tan (2A) = (\sin (2A))/(\cos (2A))}

First, we need to find
\tt{\sin A}. We know that
\tt{\sin^2 A + \cos^2 A = 1}, so we can solve for
\tt{\sin A}:


  • \tt{\sin A = √(1 - \cos^2 A) = \sqrt{1 - \left((1)/(√(10))\right)^2} = \sqrt{1 - (1)/(10)} = \sqrt{(9)/(10)} = (3)/(√(10))}

Since we're given that
\tt{\sin A < 0}, we take the negative root:


  • \tt{\sin A = -(3)/(√(10))}

Now we can find
\tt{\sin (2A)},
\tt{\cos (2A)}, and
\tt{\tan (2A)}:

1.
\tt{\sin (2A) = 2 \sin A \cos A = 2 \left(-(3)/(√(10))\right) \left((1)/(√(10))\right) = -(6)/(10) = -(3)/(5)}

2.
\tt{\cos (2A) = \cos^2 A - \sin^2 A = \left((1)/(√(10))\right)^2 - \left(-(3)/(√(10))\right)^2 = (1)/(10) - (9)/(10) = -(8)/(10) = -(4)/(5)}

3.
\tt{\tan (2A) = (\sin (2A))/(\cos (2A)) = (-(3)/(5))/(-(4)/(5)) = (3)/(4)}

So, the exact values are:

1.
\tt{\sin (2A) = -(3)/(5)}

2.
\tt{\cos (2A) = -(4)/(5)}

3.
\tt{\tan (2A) = (3)/(4)}

#BTH1

________________________________________________________

User Marvin Kallohn
by
7.4k points