158k views
1 vote
Calculate each limit.

Calculate each limit.-example-1

1 Answer

1 vote

Answer:


\sf \lim_(x\to 0) (\tan\left(2x^(2)\right)+\sin^(2)(5x))/(x^(2)) = 27

Explanation:

let's go through the steps to find the limit using l'Hôpital's rule:

L'Hôpital's Rule is a mathematical technique used for evaluating indeterminate forms, particularly when dealing with limits. It states that if the limit of the ratio of two functions
\sf (f(x))/(g(x)) as
\sf x approaches a certain value is of the form
\sf (0)/(0) or
\sf (\infty)/(\infty), then the limit of the original expression is the same as the limit of the ratio of their derivatives:


\sf \lim_(x \to a) (f(x))/(g(x)) = \lim_(x \to a) (f'(x))/(g'(x))

This rule is particularly useful when dealing with limits involving functions that approach zero or infinity, and it helps simplify the evaluation of such limits.

Given limit:


\sf \lim_(x\to 0) (2x^(2)+\sin^(2)(5x))/(x^(2))

Rearrange terms:


\sf \lim_(x\to 0) \left((\sin^(2)(5x)+\tan\left(2x^(2)\right))/(x^(2))\right)

Direct substitution:


\sf (\sin^(2)(5 \cdot 0)+\tan\left(2 \cdot 0^(2)\right))/(0^(2))

Simplify:


\sf (0)/(0)

Apply l'Hôpital rule:


\sf \lim_(x\to 0) (10\sin\left(5x\right)\cos\left(5x\right)+4\sec^(2)\left(2x^(2)\right)x)/(2x)

Direct substitution:


\sf (10\sin\left(5 \cdot 0\right)\cos\left(5 \cdot 0\right)+4\sec^(2)\left(2 \cdot 0^(2)\right) \cdot 0)/(2 \cdot 0)

Simplify:


\sf (0)/(0)

Apply l'Hôpital's rule again:


\sf \lim_(x\to 0) (-50\sin^(2)(5x)+50\cos^(2)(5x)+4\sec^(2)\left(2x^(2)\right)+32x^(2)\sec^(2)\left(2x^(2)\right)\tan\left(2x^(2)\right))/(2)

Direct substitution:


\sf (-50\sin^(2)(5 \cdot 0)+50\cos^(2)(5 \cdot 0)+4\sec^(2)\left(2 \cdot 0^(2)\right)+32 \cdot 0^(2)\sec^(2)\left(2 \cdot 0^(2)\right)\tan\left(2 \cdot 0^(2)\right))/(2)

Simplify:


\sf 27

So, the answer is:


\sf \lim_(x\to 0) (\tan\left(2x^(2)\right)+\sin^(2)(5x))/(x^(2)) = 27

User Blep
by
7.7k points