To solve this problem, you can use the combined gas law, which is expressed as:
![\[ (P_1 \cdot V_1)/(T_1) = (P_2 \cdot V_2)/(T_2) \]](https://img.qammunity.org/2024/formulas/chemistry/high-school/8vrc7t497eupsk88qfhvkwnin0w57cdmcc.png)
where:
-
are the initial and final pressures,
-
are the initial and final volumes,
-
are the initial and final temperatures.
First, make sure temperatures are in Kelvin, as the temperature must be in Kelvin for gas law calculations.
![\[ T_1 = 100.0 + 273.15 = 373.15 \, \text{K} \]](https://img.qammunity.org/2024/formulas/chemistry/high-school/z8g25eyes5by4izl31rqx38etfkz7wa599.png)
![\[ T_2 = 175 + 273.15 = 448.15 \, \text{K} \]](https://img.qammunity.org/2024/formulas/chemistry/high-school/vb66yo5n392k9hjkhj4zt2ur0alyxo2ape.png)
Now, plug in the values:
![\[ \frac{650.0 \, \text{torr} \cdot V_1}{373.15 \, \text{K}} = \frac{925 \, \text{torr} \cdot 235 \, \text{mL}}{448.15 \, \text{K}} \]](https://img.qammunity.org/2024/formulas/chemistry/high-school/hfgdcrkpy8fu537otyl5bl6llvmxo3gcil.png)
Now, solve for
, the original volume.
![\[ 650.0 \, \text{torr} \cdot V_1 = \frac{925 \, \text{torr} \cdot 235 \, \text{mL} \cdot 373.15 \, \text{K}}{448.15 \, \text{K}} \]](https://img.qammunity.org/2024/formulas/chemistry/high-school/6zknmo70xbc51hbfnyeh55d87bstlmsyn0.png)
![\[ V_1 = \frac{925 \, \text{torr} \cdot 235 \, \text{mL} \cdot 373.15 \, \text{K}}{650.0 \, \text{torr} \cdot 448.15 \, \text{K}} \]](https://img.qammunity.org/2024/formulas/chemistry/high-school/ja55lbz4pokewm56s6vcmw3vdypmreseaj.png)
![\[ V_1 \approx 279.6 \, \text{mL} \]](https://img.qammunity.org/2024/formulas/chemistry/high-school/6fowwvv6z6x976i1o7alx9ucpu3g11rg2a.png)
So, the original volume of the container of gas was approximately
.