112,872 views
30 votes
30 votes
Questionf(2)Find R(2) where f(2)g(2)x² – a- 2 - 3010x + 100and g(2)-22 – 5x + 6611x + 110(Simplify your answer.)Provide your answer below:

User Eugeny Okulik
by
2.9k points

1 Answer

26 votes
26 votes

Answer:

Given that,

To find,


R(x)=(f(x))/(g(x))

where,


f(x)=(x^2-x-30)/(10x+100)
g(x)=(-x^2-5x+66)/(11x+110)

Simplifing f(x) and g(x), we get


f(x)=(x^2-x-30)/(10x+10))=(x^2-6x+5x-30)/(10(x+10))
=(x(x-6)+5(x-6))/(10(x+10))=((x-6)(x+5))/(10(x+10))
f(x)=((x-6)(x+5))/(10(x+10))-----(1)

This is the simplified form of f(x).

For g(x) we get,


g(x)=(-x^2-5x+66)/(11x+110)=(x^2+5x-66)/(-11(x+10))
=(x^2+11x-6x-66)/(-11(x+10))=(x(x+11)-6(x+11))/(-11(x+10))
g(x)=((x+11)(x-6))/(-11(x+10))------(2)


(i)/(g(x))=(-11(x+10))/((x+11)(x-6))

Now To find R(x), we get


R(x)=(f(x))/(g(x))=f(x)*(1)/(g(x))
=((x-6)(x+5))/(10(x+10))*(-11(x+10))/((x+11)(x-6))
=(-11(x+5))/(10(x+11))

we get,


R(x)=(-11(x+5))/(10(x+11))

Answer is:


R(x)=(-11(x+5))/(10(x+11))
User Betehess
by
3.2k points