23.7k views
1 vote
Find the zeros of m(x)=-5x^(2)+50x-135 using quadratic formula with complex numbers

User Secelite
by
7.5k points

1 Answer

5 votes

Answer:


x=5\pm √(2)\:i

Explanation:

The quadratic formula is a mathematical expression used to find the solutions of a quadratic equation of the form ax² + bx + c = 0:


\boxed{\begin{array}{l}\underline{\sf Quadratic\;Formula}\\\\x=(-b \pm √(b^2-4ac))/(2a)\\\\\textsf{when} \;ax^2+bx+c=0 \\\end{array}}

In the case of m(x) = -5x² + 50x - 135:

  • a = -5
  • b = 50
  • c = -135

Substitute the values of a, b and c into the quadratic formula:


x=(-50\pm√(50^2-4(-5)(-135)))/(2(-5))

Simplify:


x=(-50\pm√(2500-2700))/(-10)


x=(-50\pm√(-200))/(-10)

Rewrite 200 as the product of 10², 2 and -1:


x=(-50\pm√(10^2\cdot2\cdot(-1)))/(-10)


\textsf{Apply the radical rule:} \quad √(ab)=\sqrt{\vphantom{b}a}√(b)


x=(-50\pm√(10^2)√(2)√(-1))/(-10)


\textsf{Apply the radical rule:} \quad √(a^2)=a, \quad a \geq 0


x=(-50\pm10√(2)√(-1))/(-10)


\textsf{Apply the imaginary number rule:} \quad √(-1)=i


x=(-50\pm10√(2)\:i)/(-10)

Simplify by dividing the numerator and denominator by the common factor of -10:


x=5\pm √(2)\:i


Therefore, the two solutions of the quadratic equation are:


  • x=5+ √(2)\:i

  • x=5-√(2)\:i
User Peter Turner
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories