Answer:
To find the temperature (T) using the ideal gas law (PV = nRT), you can rearrange the equation to solve for T:
\[T = \frac{{PV}}{{nR}}\]
Given:
\[P = 116.8 \, \text{kPa}\]
\[V = 75.0 \, \text{mL} = 0.075 \, \text{L} \, (\text{converted from milliliters})\]
\[n = 7.16 \times 10^4 \, \text{moles}\]
\[R = 8.314 \, \text{L} \, \text{kPa}^{-1} \, \text{mol}^{-1} \, \text{K}^{-1}\]
Plug in these values to find the temperature in Kelvin (K). Remember to convert kilopascals to pascals (1 kPa = 1000 Pa).
\[T = \frac{{(116.8 \times 1000) \times 0.075}}{{7.16 \times 10^4 \times 8.314}}\]
Calculate this expression to find the temperature in Kelvin.