We have to calculate the perimeter of a pen that has an area expressed as
A = 3x²-7x+2.
We assume it is a rectangular pen, so it will have two different sides.
The area will be the product of this two side lengths, while the perimeter will be 2 times the sum of the lengths of the two sides.
Then, we start by rearranging the expression of A as a product of two factors.
We can do it by factorizing A.
To do that, we calculate the roots of A as:
Then, we can now express A as:
Then, we can consider the pen to be a rectangle (or maybe square, depending on the value of x) with sides "3x-1" and "x-2".
Then, we can now calculate the perimeter as 2 times the sum of this sides:
Answer: we can express the perimeter as 8x-6.