66,637 views
34 votes
34 votes
2. Calculate the distance MI for the length of the zipline cable. 3. Calculate the angle at which our zipliners will be descending toward the island . Safety regulations state that the angle at which a zipline cable meets the launching point cannot be smaller than 68 degrees . Please determine if we are in compliance with these regulations

2. Calculate the distance MI for the length of the zipline cable. 3. Calculate the-example-1
User Nareesa
by
3.1k points

1 Answer

17 votes
17 votes

right


\begin{gathered} AI)\text{ 400 ft} \\ MI)412.31\text{ f} \\ \text{angle = 76} \end{gathered}

Step-by-step explanation

Step 1

AI?

we have a rigth triangle

then

let


\begin{gathered} AB=side1 \\ AI=side\text{ 2} \\ IB=\text{ hypotenuse} \end{gathered}

we can use the pythagorean Thoerem to find the missing vale

so


\begin{gathered} (AB)^2+(AI)^2=(BI)^2 \\ \text{replace} \\ 300^2+(AI)^2=500^2 \\ so \\ (AI)^2=500^2-300^2 \\ AI=\sqrt[]{500^2-300^2}=\sqrt[]{160000}=400 \\ AI=400 \end{gathered}

Step 2

MI?

let


\begin{gathered} \text{angle}=x \\ \text{opposite side=100 m} \\ \text{adjacent side=400 m} \end{gathered}

so, we need a function that relates those 3 values


\tan \theta=\frac{opposite\text{ side}}{\text{adjacent side}}

replace


\begin{gathered} \tan \theta=\frac{opposite\text{ side}}{\text{adjacent side}} \\ \tan x=(400)/(100) \\ \tan x=4 \\ \text{hence} \\ x=\tan ^(-1)(4) \\ x=75.96 \\ \text{rounded} \\ x=76\text{ \degree} \end{gathered}

As 76 is greater than 68, the zipline cable compliance with these regulations.

Also, the hypotenuse (zipline ) is


\begin{gathered} (MI)^2=(AI)^2+(AM)^2 \\ \text{replace} \\ (MI)^2=(400)^2+(100)^2 \\ (MI)^2=170000 \\ MI=\sqrt[]{17000} \\ MI=412.31\text{ ft} \end{gathered}

I hope this helps you

2. Calculate the distance MI for the length of the zipline cable. 3. Calculate the-example-1
2. Calculate the distance MI for the length of the zipline cable. 3. Calculate the-example-2
User Tadmas
by
3.0k points