Answer:
The hypothesis is "You like math."
The conclusion is "You like science."
The converse is "If you like science, then you like math."
The contrapositive is "If you don't like science, then you don't like math."
Explanation:
A conditional statement is a logical statement that consists of an "if-then" structure, where the "if" part (hypothesis) presents a condition or circumstance, and the "then" part (conclusion) indicates the outcome or result that follows if the condition is met.
The given conditional statement is:
- "If you like math, then you like science."
Hypothesis
The hypothesis of a conditional statement is the circumstance or event upon which the outcome depends, appearing after the "if" part of the statement. Therefore:
- The hypothesis is "You like math."
Conclusion
The conclusion of a conditional statement is the outcome or result that is stated as a consequence of the hypothesis, appearing after the "then" part of the statement. Therefore:
- The conclusion is "You like science."
Converse
The converse of a conditional statement is a new statement formed by reversing the order of the original hypotheses and conclusion. Therefore:
- The converse is "If you like science, then you like math."
Contrapositive
The contrapositive of a conditional statement is a new statement formed by both reversing the order of the original hypothesis and conclusion and negating them, resulting in the opposite conditional relationship. Therefore:
- The contrapositive is "If you don't like science, then you don't like math."