150k views
3 votes
Solve for Interior Angles - Triangle

Solve for Interior Angles - Triangle-example-1

1 Answer

3 votes

Answer: (5x+20)°=40°, (3x+14)°=26°.

Explanation:

The sum of the angles of any triangle on the Euclidean plane is 180°.

Hence,


(5x+20)^0+114^0+(3x+14)^0=180^0\\\\5x^0+20^0+114^0+3x^0+14^0=180^0\\\\8x^0+148^0=180^0\\\\8x^0+148^0-148^0=180^0-148^0\\\\8x^0=32^0

Divide both sides of the equation by 8:


x^0=4^0.\ \ \ \ \ \ \Rightarrow\\\\(5x+20)^0=5x^0+20^0\\\\(5x+20)^0=5*4^0+20^0\\\\(5x+20)^0=20^0+20^0\\\\(5x+20)^0=40^0.\\\\(3x+14)^0=3x^0+14^0\\\\(3x+14)^0=3*4^0+14^0\\\\(3x+14)^0=12^0+14^0\\\\(3x+14)^0=26^0.

User Galloglass
by
7.5k points