To find the rate of change of y with respect to x, we need to determine the slope of the linear function represented by the given graph.
Looking at the graph, we can choose any two points on the line to calculate the slope. Let's take the points (-3, 7.2) and (4, 4.4) from the graph.
The slope of a linear function can be calculated using the formula: slope = (change in y)/(change in x).
Using the coordinates of the two points, we can calculate the change in y and the change in x as follows:
Change in y = 4.4 - 7.2 = -2.8
Change in x = 4 - (-3) = 7
Now, we can substitute these values into the formula for slope:
Slope = (-2.8) / 7
Dividing -2.8 by 7, we get:
Slope = -0.4
Therefore, the rate of change of y with respect to x for this function, written as a decimal, is -0.4.
Please note that the slope represents the rate at which the y-values change with respect to the x-values. In this case, for every unit increase in x, the y-value decreases by 0.4 units.