304,601 views
10 votes
10 votes
Evaluate. Assume u > O when In u appears. (In x)96 1 dex X O 96(In x)95+C (In x97 97x +C O (In x)97 +C O (In x)97 97 +

Evaluate. Assume u > O when In u appears. (In x)96 1 dex X O 96(In x)95+C (In x-example-1
User Robert TuanVu
by
2.7k points

1 Answer

15 votes
15 votes

EXPLANATION


\int ((\ln x)^(96))/(x)dx

Applying subtitution: u=ln(x)

By integral substitution definition


\int f(g(x))\cdot g^{^(\prime)}(x)dx=\text{ }\int f(u)du,\text{ u=g(x)}

Substitute: u=ln(x)


(du)/(dx)=(1)/(x)
(d)/(dx)=(\ln (x))

Apply the common derivative:


(d)/(dx)(\ln (x))=(1)/(x)
\Rightarrow du=(1)/(x)dx
\Rightarrow dx=xdu
=\int (u^(96))/(x)\text{xdu}

Simplify:


(u^(96))/(x)x

Multiply fractions:


a\cdot(b)/(c)=(a\cdot b)/(c)
=(u^(96)x)/(x)

Cancel the common factor: x


=u^(96)
=\int u^(96)du

Apply the Power Rule:


\int x^adx=(x^((a+1)))/(a+1),\text{ a }\\e\text{ -1}
=(u^(96+1))/(96+1)

Substitute back u=ln(x)


=(\ln ^(96+1)(x))/(96+1)

Simplify:


(\ln ^(96+1)(x))/(96+1)

Add the numbers: 96+1=97


=(\ln ^(97)(x))/(97)
=(1)/(97)\ln ^(97)(x)

Add a constant to the solution:


=(1)/(97)\ln ^(97)(x)\text{ + C}

The answer is D:


((\ln x)^(97))/(97)+C

User Kota Mori
by
2.6k points