196k views
2 votes
3.) Solve each triangle

3.) Solve each triangle-example-1

1 Answer

4 votes

Answer:

Part a):

  • m∠X = 76°
  • m∠Y = 72°
  • m∠Z = 32°
  • XY = 12 cm
  • YZ = 22.0 cm
  • XZ = 21.5 cm

Part b):

  • m∠D = 60.4°
  • m∠E = 36.6°
  • m∠F = 83°
  • DE = 25 cm
  • EF = 21.9 cm
  • DF = 15 cm

Explanation:

To solve a triangle, we need to find the measures of all three interior angles and the lengths of all three sides of the triangle.


\hrulefill

Part a)

Use the fact that the interior angles of a triangle sum to 180° to determine the measure of angle X:


\begin{aligned}m\angle X + m\angle Y + m\angle Z & = 180^(\circ)\\m\angle X + 72^(\circ) + 32^(\circ) & = 180^(\circ)\\m\angle X + 104^(\circ) & = 180^(\circ)\\m\angle X &=76^(\circ)\end{aligned}

To find the lengths of the sides of the triangle XYZ, we can use the Sine Rule:


(YZ)/(\sin X)=(XZ)/(\sin Y)=(XY)/(\sin Z)

Substitute the known values:


(YZ)/(\sin 76^(\circ))=(XZ)/(\sin 72^(\circ))=(12)/(\sin 32^(\circ))

Solve for side YZ:


(YZ)/(\sin 76^(\circ))=(12)/(\sin 32^(\circ))


YZ=(12\sin 76^(\circ))/(\sin 32^(\circ))


YZ=21.9723069...


YZ=22.0\; \sf cm\;(nearest\;tenth)

Solve for side XZ:


(XZ)/(\sin 72^(\circ))=(12)/(\sin 32^(\circ))


XZ=(12\sin 72^(\circ))/(\sin 32^(\circ))


XZ=21.5366357...


XZ=21.5\; \sf cm\;(nearest\;tenth)

Therefore:

  • m∠X = 76°
  • m∠Y = 72°
  • m∠Z = 32°
  • XY = 12 cm
  • YZ = 22.0 cm
  • XZ = 21.5 cm


\hrulefill

Part b)

To find the measures of the angles and lengths of the sides of the triangle DEF, we can use the Sine Rule:


(EF)/(\sin D)=(DF)/(\sin E)=(DE)/(\sin F)

Substitute the known values:


(EF)/(\sin D)=(15)/(\sin E)=(25)/(\sin 83^(\circ))

Solve for angle E:


(15)/(\sin E)=(25)/(\sin 83^(\circ))


15=(25\sin E)/(\sin 83^(\circ))


\sin E=(15\sin 83^(\circ))/(25)


E=\sin^(-1)\left((15\sin 83^(\circ))/(25)\right)


E=36.55025914...^(\circ)


E=36.6^(\circ)\; \sf (nearest\;tenth)

Use the fact that the interior angles of a triangle sum to 180° to determine the measure of angle D:


\begin{aligned}m\angle D + m\angle E + m\angle F & = 180^(\circ)\\m\angle D + 36.55025914...^(\circ) + 83^(\circ) & = 180^(\circ)\\m\angle D + 119.55025914...^(\circ) & = 180^(\circ)\\m\angle D &=60.4497408...^(\circ)\\m\angle D&=60.4^(\circ)\end{aligned}

Now, use the Sine Rule again to find the length of side EF:


(EF)/(\sin \left(60.4497408...^(\circ)\right))=(25)/(\sin 83^(\circ))


EF=(25\sin \left(60.4497408...^(\circ)\right))/(\sin 83^(\circ))


EF=21.9114096...


EF=21.9\;\sf cm\;(nearest\;tenth)

Therefore:

  • m∠D = 60.4°
  • m∠E = 36.6°
  • m∠F = 83°
  • DE = 25 cm
  • EF = 21.9 cm
  • DF = 15 cm
User SomeDude
by
7.4k points