32.2k views
2 votes
9y + 6xy = 30; x = -6 Solve the equation for y. Then find the value of y for the given value of x.

2 Answers

0 votes

Answer:

>>>
\sf{ ( - 10)/( \: \: \: 9) }

Explanation:

Given ,

  • 9y + 6xy = 30

  • Value of x that is -6

We have to find ,

  • Value of y

Solution :


\longmapsto \: \: \: \sf{9y + 6xy = 30}

Substituting value of x i.e. -6 in equation :


\longmapsto \: \: \: \sf{9y + 6( \bold{- 6})y = 30}


\longmapsto \: \: \: \sf{9y - 36y = 30}


\longmapsto \: \: \: \sf{ - 27y = 30}

Dividing both sides with -27 :


\longmapsto \: \: \: \sf{ \frac{ \cancel{- 27}y}{ \cancel{27}} = \frac{ \cancel{30}}{ \cancel{27}}}

We get ,


\longmapsto \: \: \: \sf{ - y = (10)/(9) }

Multiplying both sides with -1 :


\longmapsto \: \: \: \sf{ - y * ( - 1) = (10)/(9) * ( - 1) }

We get ,


\longmapsto \: \: \: \underline{ \boxed{ \sf{ \bold{ y = ( - 10)/( \: \: \: 9) }}}} \: \: \: \bigstar

  • Therefore, value of y is "-10/9"

Verification :-

→ 9y + 6xy = 30

→ 9 (-10/9) + 6(-6)(-10/9) = 30

→ -10 -36(-10/9) = 30

→ -10 -4(-10) = 30

→ -10 + 40 = 30

→ 30 = 30

→ LHS = RHS

→ Hence, Verified

  • Therefore, answer is correct

Hope, it'll help you!! :)

User CMaury
by
8.0k points
3 votes
9y+6(-6)y=30
9y-36y=30
-27y=30
y= -10/9
User Frank Yin
by
8.1k points