159,381 views
11 votes
11 votes
Sec40+ sec20 tan2 0 - 2 tan4 0 =3 sec² 0 -2Sect0-210

Sec40+ sec20 tan2 0 - 2 tan4 0 =3 sec² 0 -2Sect0-210-example-1
User Inokey
by
2.5k points

1 Answer

25 votes
25 votes

Given:


sec^4\theta+sec^2\theta tan^2\theta-2tan^4\theta=3sec^2\theta-2

Required:

We need to prove the given equation.

Step-by-step explanation:

Consider the left-hand side of the equation.


Add\text{ and subtract }3tan^4\theta.


sec^4\theta+sec^2\theta tan^2\theta-2tan^4\theta=sec^4\theta+sec^2\theta tan^2\theta-2tan^4\theta+3tan^4\theta-3tan^4\theta
=sec^4\theta+sec^2\theta tan^2\theta+tan^4\theta-3tan^4\theta


Add\text{ and subtract -2}sec^2\theta tan^2\theta.


=sec^4\theta+sec^2\theta tan^2\theta+tan^4\theta-3tan^4\theta-2sec^2\theta tan^2\theta+2sec^2\theta tan^2\theta
=sec^4\theta-2sec^2\theta tan^2\theta+tan^4\theta-3tan^4\theta+sec^2\theta tan^2\theta+2sec^2\theta tan^2\theta
=sec^4\theta-2sec^2\theta tan^2\theta+tan^4\theta-3tan^4\theta+3sec^2\theta tan^2\theta
Use\text{ }sec^4\theta-2sec^2\theta tan^2\theta+tan^4\theta=(sec^2\theta-tan^2\theta)^2
=(sec^2\theta-tan^2\theta)^2-3tan^4\theta+3sec^2\theta tan^2\theta
=(sec^2\theta-tan^2\theta)^2+3tan^2\theta(sec^2\theta-tan^2\theta)
Use\text{ }sec^2\theta-tan^2\theta=1.
=1^2+3tan^2\theta(1)
=1+3tan^2\theta
Use\text{ }tan^2\theta=sec^2\theta-1.
=1+3(sec^2\theta-1)
=1+3sec^2\theta-3
=3sec^2\theta-2

We get the right-hand side of the equation.

Final answer:


sec^4\theta+sec^2\theta tan^2\theta-2tan^4\theta=3sec^2\theta-2

User Pavan Varyani
by
3.1k points