Given:
The three vertices of a parallelogram are (-3,8), (4,5), (2,-5).
To find:
The fourth vertex of the parallelogram.
Solution:
Let the vertices of the parallelogram are A(-3,8), B(4,5), C(2,-5) and D(a,b).
We know that, diagonals of a parallelogram bisect each other. It means midpoints of both diagonals are same.
Midpoint formula:
![Midpoint=\left((x_1+x_2)/(2),(y_1+y_2)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/college/ej12unagq872xsay3nec0mk8wdb0s1fbkk.png)
Two diagonals of ABCD are AC and BD.
Midpoint of AC = Midpoint of BD
![\left((-3+2)/(2),(8-5)/(2)\right)=\left((4+a)/(2),(5+b)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/3zbti7laiwidruyo1zusbw6f8ojde2zyxt.png)
![\left((-1)/(2),(3)/(2)\right)=\left((4+a)/(2),(5+b)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/rdglkx2ltimt60fwzzevgur2zghmm8lsss.png)
On comparing both sides, we get
![(4+a)/(2)=(-1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/deqwhjapdbpox49ydo3oreysvw4381kr3l.png)
![4+a=-1](https://img.qammunity.org/2022/formulas/mathematics/high-school/eudgokr4hbi5rrr6aaem27v5xa31v5c9dd.png)
![a=-1-4](https://img.qammunity.org/2022/formulas/mathematics/high-school/2swh4d0vbxin76t2ocy404m7ql714gr1mx.png)
![a=-5](https://img.qammunity.org/2022/formulas/mathematics/high-school/zl63qmupx20lq5a3kpc9jd5vkq7j3axz7m.png)
And,
![(5+b)/(2)=(3)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/8kg8u29lligtp6vxxix2acrshq9ml1p37w.png)
![5+b=3](https://img.qammunity.org/2022/formulas/mathematics/high-school/tsbr78v1xa9p2cdgxrmt4uwgkfzr37cn0v.png)
![b=3-5](https://img.qammunity.org/2022/formulas/mathematics/high-school/i68vp9bouqb0i9mntdmud7r2axwsl1ykyo.png)
![b=-2](https://img.qammunity.org/2022/formulas/mathematics/high-school/ewthc2c26npjv6riywtfvtfyxjaq1ah0hp.png)
Therefore, the coordinates of fourth vertex are (-5,-2).