73,648 views
25 votes
25 votes
The exact Value of the sine, cosine, and tangent about of the angle

The exact Value of the sine, cosine, and tangent about of the angle-example-1
User Kevingoos
by
3.0k points

1 Answer

14 votes
14 votes

-(11\pi)/(12)=(\pi)/(4)-(7\pi)/(6)

Answer:

Below are the exact values of sine, cosine, and tangent of the given angle -11π/12.


sin(-(11\pi)/(12))=(-√(6)+√(2))/(4)
cos(-(11\pi)/(12))=(-√(6)-√(2))/(4)
tan(-(11\pi)/(12))=(sin(-(11\pi)/(12)))/(cos(-(11\pi)/(12)))=2-√(3)

Step-by-step explanation:

We can use the following trigonometric identities to solve the exact value of the given angle.


\begin{gathered} sin(x+y)=sin\text{ }x\text{ }cos\text{ }y+cos\text{ }x\text{ }sin\text{ }y \\ cos(x+y)=cos\text{ }x\text{ }cos\text{ }y-sin\text{ }x\text{ }sin\text{ }y \end{gathered}

For sine function, we have:


\begin{gathered} sin(-(11\pi)/(12))=sin((\pi)/(4)-(7\pi)/(6)) \\ sin((\pi)/(4)-(7\pi)/(6))=sin\text{ }(\pi)/(4)cos(-(7\pi)/(6))+cos\text{ }(\pi)/(4)sin(-(7\pi)/(6)) \end{gathered}

Simplify.


\begin{gathered} sin((\pi)/(4)-(7\pi)/(6))=(√(2))/(2)(-(√(3))/(2))+(√(2))/(2)((1)/(2)) \\ sin((\pi)/(4)-(7\pi)/(6))=(-√(6))/(4)+(√(2))/(4) \\ sin((\pi)/(4)-(7\pi)/(6))=(-√(6)+√(2))/(4) \\ sin(-(11\pi)/(12))=(-√(6)+√(2))/(4) \end{gathered}

For cosine function, we have:


\begin{gathered} cos(-(11\pi)/(12))=cos((\pi)/(4)-(7\pi)/(6)) \\ cos((\pi)/(4)-(7\pi)/(6))=cos(\pi)/(4)cos(-(7\pi)/(6))-sin(\pi)/(4)sin(-(7\pi)/(6)) \end{gathered}

Simplify.


\begin{gathered} cos((\pi)/(4)-(7\pi)/(6))=(√(2))/(2)(-(√(3))/(2))-((√(2))/(2))((1)/(2)) \\ cos((\pi)/(4)-(7\pi)/(6))=(-√(6))/(4)-(√(2))/(4) \\ cos((\pi)/(4)-(7\pi)/(6))=(-√(6)-√(2))/(4) \\ cos(-(11\pi)/(12))=(-√(6)-√(2))/(4) \end{gathered}

Lastly, for tangent function, it is the ratio between sine and cosine function.


tan(-(11\pi)/(12))=(sin(-(11\pi)/(12)))/(cos(-(11\pi)/(12)))

Applying the division rule, we get the reciprocal of the denominator and multiply it to the numerator. The equation becomes:


tan(-(11\pi)/(12))=sin(-(11\pi)/(12))*(1)/(cos(-(11\pi)/(12)))

Now, let's replace the sine and cosine value that we have calculated above.


tan(-(11\pi)/(12))=(-√(6)+√(2))/(4)*(4)/(-√(6)-√(2))

Since 4 is a common factor on both numerator and denominator, we can cancel it out. The equation then becomes,


tan(-(11\pi)/(12))=(-√(6)+√(2))/(-√(6)-√(2))

To further simplify the function, let's remove the radicals in the denominator by rationalization.


\begin{gathered} tan(-(11\pi)/(12))=(-√(6)+√(2))/(-√(6)-√(2))*(-√(6)+√(2))/(-√(6)+√(2)) \\ tan(-(11\pi)/(12))=(6-√(12)-√(12)+2)/(6-√(12)+√(12)-2) \end{gathered}
\begin{gathered} tan(-(11\pi)/(12))=(8-2√(12))/(4) \\ tan(-(11\pi)/(12))=(8-2√(4*3))/(4) \\ tan(-(11\pi)/(12))=(8-(2*2√(3)))/(4) \\ tan(-(11\pi)/(12))=(8-4√(3))/(4) \\ Factor\text{ }4\text{ }in\text{ }the\text{ }numerator. \\ tan(-(11\pi)/(12))=(4(2-√(3)))/(4) \\ Cancel\text{ }4. \\ tan(-(11\pi)/(12))=2-√(3) \end{gathered}

User Eilidh
by
3.0k points