Answer:
Explanation:
We can use trigonometry to find the angle between the slant height and the base of the cone.
The base of the cone is a circle with radius 1.65 cm. The slant height is the hypotenuse of a right triangle whose other two sides are the height (which we don't know) and the radius (1.65 cm).
Using the Pythagorean theorem, we can find the height of the cone:
height^2 = (slant height)^2 - (radius)^2
height^2 = (4.70 cm)^2 - (1.65 cm)^2
height^2 = 19.96 cm^2 - 2.72 cm^2
height^2 = 17.24 cm^2
height = sqrt(17.24) cm
height = 4.15 cm (rounded to two decimal places)
Now we can use trigonometry to find the angle between the slant height and the base of the cone.
tan(angle) = opposite / adjacent
tan(angle) = height / radius
tan(angle) = 4.15 cm / 1.65 cm
tan(angle) = 2.515
Taking the inverse tangent (or arctan) of both sides, we get:
angle = arctan(2.515)
angle = 70.32 degrees (rounded to two decimal places)
Therefore, the angle between the slant height and the base of the cone is 70.32 degrees.