Answer:
Assuming that the expression is asking for the tangent of 1 radian, we can use the tangent half-angle formula to find an exact value:
tan(1) = 2tan(1/2) / (1 - tan^2(1/2))
To find tan(1/2), we can use the half-angle formula for tangent:
tan(1/2) = sin(1) / (1 + cos(1))
We cannot simplify this expression any further without a calculator. Therefore, the exact value of tan(1) is:
tan(1) = 2sin(1) / (cos(1) - cos^2(1) + 1)
Again, we cannot simplify this expression any further without a calculator.
For the second expression, we are asked to find the value of:
tan(arctan(6/4))
By definition, tan(arctan(x)) = x for all x, so we have:
tan(arctan(6/4)) = 6/4 = 3/2
Therefore, the exact value of the expression tan(6/4) is 3/2.