Answer:
Explanation:
We can start by writing the given equation in terms of polar form:
Re(z1,z2-bar) = modulus of z1 * modulus of z2
If we write z1 and z2 in polar form, we get:
z1 = r1(cosθ1 + i sinθ1)
z2 = r2(cosθ2 + i sinθ2)
Then, the conjugate of z2 is:
z2-bar = r2(cosθ2 - i sinθ2)
Using the formula for the real part of the product of two complex numbers, we get:
Re(z1,z2-bar) = Re(z1 * z2-bar)
Substituting the expressions for z1 and z2-bar, we get:
Re(z1,z2-bar) = Re(r1(cosθ1 + i sinθ1) * r2(cosθ2 - i sinθ2))
Simplifying the product, we get:
Re(z1,z2-bar) = Re(r1r2[(cosθ1 cosθ2 + sinθ1 sinθ2) + i(sinθ1 cosθ2 - cosθ1 sinθ2)])
The real part of this expression is:
Re(z1,z2-bar) = r1r2(cosθ1 cosθ2 + sinθ1 sinθ2)
Using the identity cos(θ1 - θ2) = cosθ1 cosθ2 + sinθ1 sinθ2, we can write:
Re(z1,z2-bar) = r1r2 cos(θ1 - θ2)
Now we can substitute this expression back into the original equation and get:
r1r2 cos(θ1 - θ2) = r1r2
Dividing both sides by r1r2, we get:
cos(θ1 - θ2) = 1
This equation is true if and only if θ1 - θ2 = 2πn for some integer n. In other words, θ1 = θ2 + 2πn, where n is an integer.
Therefore, we have proved that Re(z1,z2-bar) = modulus of z1 * modulus of z2 if and only if arg z1 = arg z2 + 2πn, where n is an integer.