Answer:
To find the derivative of the function y = x^2 - x + 3 using the first principle, we start by applying the definition of the derivative:
f'(x) = lim (h -> 0) [f(x+h) - f(x)] / h
where f(x) = x^2 - x + 3.
Now we substitute the function into the equation and simplify:
f'(x) = lim (h -> 0) [(x+h)^2 - (x+h) + 3 - (x^2 - x + 3)] / h
f'(x) = lim (h -> 0) [(x^2 + 2xh + h^2 - x - h + 3) - (x^2 - x + 3)] / h
f'(x) = lim (h -> 0) [2xh + h^2 - h] / h
Now we can cancel out the h in the numerator and denominator, leaving:
f'(x) = lim (h -> 0) [2x + h - 1]
Finally, we take the limit as h approaches 0:
f'(x) = 2x - 1
Therefore, the derivative of y = x^2 - x + 3 with respect to x is f'(x) = 2x - 1.
Explanation: