Answer:
Explanation:
To prove this statement, we first rewrite the inequality as follows:
(n^2)/((ln^2) − 1) − ((n^2)/2)/ln((n^2)/2) > 1.1
This can be further simplified to:
(n^2)/((ln^2) − 1) − (n^2)/2ln((n^2)/2) > 1.1
We can now use the fact that if a > b, then a/c > b/c. Applying this to the inequality above, we get:
(n^2)/2ln((n^2)/2) > (n^2)/((ln^2)−1) − 1.1
Rearranging, we get:
2ln((n^2)/2) > ((ln^2)−1) − 1.1
Now, let's take the natural logarithm of both sides:
ln(2ln((n^2)/2)) > ln(((ln^2)−1) − 1.1)
Using the properties of logarithms, we can rewrite this as:
2ln(n) > ln(((ln^2)−1) − 1.1)
Finally, solving for n, we get:
n > e^(ln(((ln^2)−1) − 1.1))
When we calculate this, we get n > 347. Therefore, the statement is true for all n ≥ 347.Yes, this statement is true for all n ≥ 347.