Answer:
k=-570
Explanation:
P(x) = kx^3+23x^2+71x+30
If 2x-1 is a factor of p(x)
Then,
2x-1 =0
2x=1
x=1/2 and at this value, p(x) =0
Substitute x = 1/2 for x in p(x)
p(1/2) = k(1/2)^3 + 23(1/2)^2;+71(1/2)+30
k(1/8)+23/4 +71/2+30=0
k/8= -23/4 -71/2-30
k/8 = -285/4
k= -(285*8)/4
k=-570
Thus, the polynomial p(x) = -570x^3 +23x^2 +71x +30
Factorization of p(x)
(2x-1) (-285x^2 +131x-30).